The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems

نویسندگان

  • Per Christian Hansen
  • Dianne P. O'Leary
چکیده

Regularization algorithms are often used to produce reasonable solutions to ill-posed problems. The L-curve is a plot-for all valid regularization parameters-of the size of the regularized solution versus the size of the corresponding residual. Two main results are established. First a unifying characterization of various regularization methods is given and it is shown that the measurement of "size" is dependent on the particular regularization method chosen. For example, the 2-norm is appropriate for Tikhonov regularization, but a 1-norm in the coordinate system of the singular value decomposition (SVD) is relevant to truncated SVD regularization. Second, a new method is proposed for choosing the regularization parameter based on the L-curve, and it is shown how this method can be implemented efficiently. The method is compared to generalized cross validation and this new method is shown to be more robust in the presence of correlated errors. 1. Introduction. In many applications such as spectroscopy [1], seismography [13], and medical imaging [11], data are gathered by convolution of a noisy signal with a detector. A linear model of this process leads to an integral equation of the first kind:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

A Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method

A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...

متن کامل

A discrete L-curve for the regularization of ill-posed inverse problems

In many applications, the discretization of continuous ill-posed inverse problems results in discrete ill-posed problems whose solution requires the use of regularization strategies. The L-curve criterium is a popular tool for choosing good regularized solutions, when the data noise norm is not a priori known. In this work, we propose replacing the original ill-posed inverse problem with a nois...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

Regularization Parameter Selection in Discrete Ill-Posed Problems - The Use of the U-Curve

To obtain smooth solutions to ill-posed problems, the standard Tikhonov regularization method is most often used. For the practical choice of the regularization parameter α we can then employ the well-known L-curve criterion, based on the L-curve which is a plot of the norm of the regularized solution versus the norm of the corresponding residual for all valid regularization parameters. This pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1993